3D Bioplotter Research Papers

Displaying all papers about Craniofacial Bone Repair (2 results)

Optimization of the modular reinforced bone scaffold for customized alveolar bone defects

Materials Letters 2023 Volume 331, Article 133413

A modular reinforced bone scaffold with enhanced mechanical properties has recently been developed by our group. It includes: 1) A load-bearing module: a skeleton which is made of a slowly degradable material, undertaking mechanical necessities of the scaffold, and 2) A bio-reactive module: a porous and biodegradable component undertaking biological necessities of the scaffold. The load-bearing module is placed into the bio-reactive module to reinforce it. This paper is dedicated to optimizing the load-bearing module for a certain customized alveolar bone defect. More specifically, a 3D-printed skeleton, made of polycaprolactone (PCL), is optimized based on the boundary conditions of the…

Inclusion of a 3D-printed Hyperelastic Bone mesh improves mechanical and osteogenic performance of a mineralized collagen scaffold

Acta Biomaterialia 2021 Volume 121, Pages 224–236

Regenerative repair of craniomaxillofacial bone injuries is challenging due to both the large size and irregular shape of many defects. Mineralized collagen scaffolds have previously been shown to be a promising biomaterial implant to accelerate craniofacial bone regeneration in vivo. Here we describe inclusion of a 3D-printed polymer or ceramic-based mesh into a mineralized collagen scaffold to improve mechanical and biological activity. Mineralized collagen scaffolds were reinforced with 3D-printed Fluffy-PLG (ultraporous polylactide-co-glycolide co-polymer) or Hyperelastic Bone (90wt% calcium phosphate in PLG) meshes. We show degradation byproducts and acidic release from the printed structures have limited negative impact on the viability…